证明矩形判定方法

成长网 2023-02-10 20:13 编辑:admin 277阅读

一、证明矩形判定方法

有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,有三个角是直角的四边形是矩形。对角线相等且互相平分的四边形是矩形。下面我给大家带来证明矩形判定 方法 ,希望能帮助到大家!

证明矩形判定方法

(1)有一个角是直角的平行四边形是矩形;

(2)对角线相等的平行四边形是矩形。

(3)有三个角是直角的四边形是矩形。

(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。

(5)对角线相等且互相平分的四边形是矩形。由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致 总结 如下:

(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;

(2)矩形的四个角都是直角;

(3)矩形的对角线相等;

(4)具有不稳定性(易变形)。

有三个角是直角的四边形是矩形。

对角线互相平分且相等的四边形是矩形。

有一个角为直角的平行四边形是矩形。

对角线相等的平行四边形是矩形。

证明矩形判定定理

长方形也称矩形,是特殊的平行四边形之一。即有一个角是直角的平行四边形称为长方形。

有一个角是直角的平行四边形叫做矩形。

周长和面积公式:矩形ABCD的周长=2(a+b);

矩形ABCD的面积S=ab。(当a=b时,可以得到正方形的相应公式)

矩形定理1:

1、矩形的对边平行且相等。

2、矩形的四个角都是直角。

矩形定理2:

1、矩形的对角线相等。

平行四边形ABCD:AC=BD

2、矩形的对角线相互平分

平行四边形ABCD是矩形:OA=OC,OB=OD

矩形的对角线相等,我们可以通过勾股定理证明。

证明:∵△ABC中,∠ABC =90°,

∴AC2=a2+b2

∵△DCB中,∠BCD =90,

∴BD2= a2+ b2

∴AC2=BD2

∴AC=BD

证明矩形判定性质

性质:1.矩形具有平行四边形的一切性质;2.矩形的对角线相等;3.矩形的四个角都是90度;4.矩形是轴对称图形。 矩形的性质

1.矩形具有平行四边形的一切性质

2.矩形的对角线相等

3.矩形的四个角都是90度

4.矩形是轴对称图形

1.有一个角是直角的平行四边形是矩形

2.对角线相等的平行四边形是矩形

3.有三个角是直角的四边形是矩形

4.对角线相等且互相平分的四边形是矩形

证明:因为平行四边形ABCD

∴AB=CD,AB‖CD

∴∠B+∠D=180度

∴BM=MC

∴MA=MD

∴△MAB≌△MDC(SSS)

∴∠B=∠D=90度

∴四边形ABCD是矩形(有一个内角为90度的平行四边形是矩形)。

证明矩形判定方法相关 文章 :

★ 什么是矩形

★ 矩形的概念矩形的定义是什么

★ 初二数学课文知识点笔记

★ 八年级数学期中知识点

★ 等边梯形判定方法

★ 初中几何证明知识点归纳

★ 梯形的判定方法

★ 八年级下册第十八章数学教案人教版

★ 2020中考数学复习知识点和解题方法

★ 初三数学期末复习

二、《探索勾股定理》这课,给我讲讲。

勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。 勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。 勾股定理指出: 直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。 也就是说, 设直角三角形两直角边为a和b,斜边为c,那么 a^2+b^2=c^2 勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。 勾股定理其实是余弦定理的一种特殊形式。 我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。数学公式中常写作a^2+b^2=c^2 5x5加12x12再根号 答案是13。

三、勾股定理的解教?

直角三角形中,斜边的平方等于两直角边的平方和。即,C^2=a^2+b^2。

四、如何进行勾股定理的理解与应用教学

勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。